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Abstract 

The symmetry conditions for flat points of minimal 
surfaces have been studied in relation to the order/3 
of points on such surfaces. Using symmetry aspects, 
a set of rules for the derivation of fiat points have 
been developed. By means ofthese rules the flat points 
for the 45 families of minimal balance surfaces known 
so far have been determined. As a check for complete- 
ness the relation between the genus of a minimal 
surface and the orders of its flat points has been used. 

1. Introduction 

A minimal surface in three-dimensional space is a 
surface that fulfils the condition 

k l + k 2 = 0  

for each of its points, kl and k2 are the main curvatures 
of the surface. For most points this defining condition 
holds such that 

kl = -  k2#0. 

Then the surrounding area of the point has a saddle- 
like shape. For exceptional points, however, 

kl = k2=O 

is fulfilled. Such points are called the flat points of 
the surface. 

In the surrounding of a flat point the surface shows 
j >  2 valleys which are separated by j  ridges, l fa  tiling 
on the minimal surface is constructed in such a way 
that all fiat points lie on vertices and the edges are 
defined by lines of curvature, more than four (at least 
six) tiles meet at each flat point. The best known 
example of a fiat point is the 'monkey saddle' with 
j - -3 .  It has already been observed for the classical 
three-periodic minimal surfaces of Schwarz (1890). 

For two reasons, the flat points on three-periodic 
minimal surfaces are of special interest. 

(1) They may be used for the parametrization of 
the surfaces (of Lidin & Hyde, 1987). 

(2) There exists a relationship between the flat 
points of a surface and its genus (cf Hyde, 1989; 
Hopf, 1983). 

The latter property has been used to derive a com- 
plete list of flat points of all minimal balance surfaces 
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known so far (Fischer & Koch 1987, 1989a, b; Koch 
& Fischer, 1988, 1989a, b). In addition, the relation 
between the order of a fiat point and its site symmetry 
has been studied for this purpose. 

2. Order and site symmetry of fiat points 

For any point of an intersection-free minimal surface 
[which need not be a minimal balance surface, cf 
Fischer & Koch (1987)], the degree of its flatness may 
be characterized by a non-negative integer/3, called 
its order. 

Let Po be a point of a minimal surface and no the 
normal vector at that point. Then the order of Po may 
be derived as follows (cf Hyde, 1989). A second point 
P is moved on the surface around Po and the 
behaviour of its normal vector n during this motion 
is considered. If Po is not a fiat point but an ordinary 
point, n rotates once around no during one revolution 
of P around Po (cf Fig. 1). If, however, Po is a fiat 
point, n rotates more than once around no per revol- 
ution of P, say p times. Then the order /3 of Po is 
defined as 

/3 = p - l .  

Accordingly, an ordinary point has order /3 =0, 
whereas the order of a flat point may be any positive 
integer. As so far only orders up to/3 = 4 have been 
observed for three-periodic minimal surfaces, the 
geometrical situation is illustrated in Figs. 2 to 5 for 
fiat points with /3 = 1 (monkey saddle), 2, 3 and 4, 
respectively. 

As may be learned from these figures, the number 
j of valleys (or of ridges) surrounding a flat point is 

j = / 3 + 2 .  

The figures display, in addition, the maximal site 
symmetry compatible with a (flat) point of given 
order. This maximal site symmetry is ~,m2 for/3 = 0 
(ordinary point), 3m for/3 = 1 (monkey saddle), 8m2 
for /3--2, 5m for /3 =3, and 12m2 for /3--4. The 
relation between /3 and the maximal site symmetry 
can more easily be expressed if rotoreflections instead 
of rotoinversions are considered. Then the maximal 
site symmetry is Nm2 or Nm for /3 even or odd, 
respectively, with N = 2j = 2/3 + 4. 
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34 FLAT POINTS OF MINIMAL BALANCE SURFACES 

For three-periodic minimal surfaces this maximal 
site symmetry can only be realized for/3 = 0 and/3 = 1, 
but any corresponding subgroup may also occur as 
site symmetry of a (flat) point on a minimal surface. 
Flat points with any higher value of/3 and maximal 
site symmetry, however, occur, for example, on a 
special kind of one-periodic minimal surface, called 
saddle towers (cf  Karcher, 1988). 

The relations between the orders of (fiat) points 
and their possible site symmetries are summarized in 
a subgroup diagram (Fig. 6). In analogy with the 
symmetry description of minimal balance surfaces 
introduced by Fischer & Koch (1987), group- 
subgroup pairs of point groups are used in this 
diagram, if the site symmetry contains symmetry 
operations that interchange the two sides of the sur- 
face. In this case the second symbol refers to that 
subgroup of index 2 that does not interchange the 

. ' /J , l \ \  

' '_L 

t l  < 
(a) 
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2 ' 8 

(b) 

Fig. 1. (a) Surrounding of a (flat) point with order/3 and maximal 
site symmetry. The arrows represent projections of the normal 
vectors of  the surface. (b) The change of the direction of the 
normal vector along the closed path indicated in (a) is illustrated 
in a stereographic projection. /3 = 0: site symmetry 71m2-2mm, 
ordinary point. 

sides. If, however, all site-symmetry operations pre- 
serve each side of the surface, only one symbol is 
given. For points on minimal surfaces that subdivide 
the three-dimensional space into two non-congruent 
regions only the latter case may occur. The orientation 
of the site-symmetry elements with respect to the 
minimal surface is unambiguous except for one case 
(cf. Fischer & Koch, 1987; Koch & Fischer 1988). 
With the exception of twofold axes all rotation and 
rotoinversion axes and all mirror planes have to be 
perpendicular to the surface. For site symmetry 2, 
however, an axis 21 perpendicular to the surface has 
to be distinguished from an axis 2 t, within the surface. 

As Fig. 6 shows, most site symmetries of points on 
intersection-free minimal surfaces necessarily enforce 
these points to be fiat points with some minimal 
orders. Conversely, only points with site symmetry 
74m2-222, 4-2, 222-2, 2ram, 2, m or 1 can be ordinary 
points on minimal balance surfaces and only those 
with site symmetry 2ram, 2, m or 1 can be such points 
on other intersection-free three-periodic minimal sur- 
faces. It should be noticed, however, that the diagram 
is incomplete: for site symmetry 3, for example, /3 

s 
, " \  \ / / '  ,. 

_ _ ~ 6  . 5',, \ . .__. /  .2 2 C  

(a) 

f j f  . . . . 

(b) 

Fig. 2. As Fig. 1. fl = 1: site symmetry 3m-3m,  monkey saddle. 
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may take not only the values l and 4, but any value 
j - 2 with j any positive integer divisible by 3, because 
the number of valleys or ridges must be divisible by 
3. In the derivation of flat points described below, 
however, such higher values of/3 never had to be 
considered. 

3. Fiat points and genera of minimal surfaces 

For the decision whether all the flat points of an 
intersection-free three-periodic minimal surface have 
been found, the following equation going back to 
Hopf (1983) and having been introduced by Hyde 
(1989) may be used: 

g = l + ~ f l , .  

Here, g is the genus ofthe surface defined with respect 
to a primitive unit cell of the oriented surface (cf. 
Fischer & Koch, 1989c) and the summation runs over 
all flat points within this unit cell. For minimal bal- 
ance surfaces this means the following: If G is the 
full symmetry of the surface and H is its subgroup 
of index 2 not interchanging both sides of the surface 

(Fischer & Koch, 1987), then the summation has to 
be carried out over a primitive unit cell of H. 

For practical reasons, however, it is more con- 
venient to refer to a primitive unit cell of G and to 
modify the formula such that only symmetrically 
inequivalent flat points are considered. For this, two 
cases have to be distinguished: 

(a) If H is a translation-equivalent subgroup of 
G, i.e. no translation of G interchanges the two sides 
of the surface, then 

g =  1 + ~ .  mi/3~ (1) 

holds 
(b) If H is a class-equivalent subgroup of G, i.e. 

half of the translations of G interchange the two sides 
of the surface, the corresponding equation is 

g = l + ~  mifl,. (2) 

In both cases i runs over all kinds of symmetrically 
inequivalent flat points and mi means the multiplicity 
of the ith kind referred to a primitive unit cell of G. 

As g is at least 3 for any intersection-free three- 
periodic minimal surface (cf. Fischer & Koch, 1989c), 

i l  I / , \  k,,.} i .  I 
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(a) (a) 

- -  - - - ~ . .  

(b) (b) 

Fig. 3. As Fig. I. /3--2: site symmetry 8m2-4mm. Fig. 4. As Fig. 1./3 = 3: site symmetry Sm-Sm. 
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it follows from (1) and (2) that each such surface 
must contain flat points. 

4. Derivat ion of  flat points 

The symmetry conditions described above together 
with some general considerations have been used for 

I / / ~  s / ' ,, C2~\\,, 

! 7 

(a) 

(b) 

Fig. 5. As Fig. 1./3--4: site symmetry l---2m2-6mm. 
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Fig. 6. Group-subgroup diagram representing the maximal and 
the possible crystallographic site symmetries of (flat) points with 
order up to 4. 

the complete derivation of all flat points of the known 
minimal balance surfaces• The procedure for this is 
composed of several successive steps each followed 
by a check on completeness by means of (1) or (2). 

(a) Each point with site symmetry 622-6, 422-4, 
32-3, 3rn-3rn, 3-3, 2/m-rn, or 1-1 that lies on the 
surface must be a fiat point with some minimal order 
that may be read from Fig. 6. If the inherent symmetry 
of the minimal balance surface is G-H, the Wyckott 
positions of these points may be taken from Table 1 
of Koch & Fischer (1988). In most such cases not 
only the locations of the fiat points but also their 
normals are fixed by symmetry• P surfaces (Schwarz, 
1890) with symmetry Irn3m-Pm3m, for example, 
must contain fiat points with /3 = 1 (at least) at 
Wyckoffposition lm3m 8(c) 3m ~ • 4zz and with direc- 
tions (111) of the normals. As the genus is 3 (cf. 
Fischer & Koch, 1989c), (2) proves that the surface 
has no additional flat points. For site symmetry 2 /m-2 
the normal at the flat point is only fixed to lie within 
the mirror plane. In the case of site symmetry 1-1 its 
direction is not restricted at all. 

(b) Ifa six-, four- or threefold rotation axis crosses 
the minimal (balance) surface, the intersection point 
also has to be a fiat point. Its site symmetry then is 
6ram, 6, 4ram, 4, 3m or 3 with respect to G as well 
as to H. In this case the normal coincides with the 
rotation axis, but the location of the fiat point is not 
further fixed by symmetry. The respective coordinate 
parameter may be estimated, e.g. from a model of the 
surface, or it may be calculated, if the parametrization 
of the surface is known. A C(P) surface (Neovius, 
1883), for example, has the same symmetry as a P 
surface, but its genus is 9. Therefore, it must possess 
additional fiat points• As the symmetry of a generating 
circuit ofa  C(P) surface is 4m.m (cf Fischer & Koch, 
1987), the remaining fiat points have /3 = 2 and are 
located at lm3rn 12(e) 4m.m xO0 with normals 
parallel to (100). 

(c) If a minimal balance surface contains twofold 
axes, the behaviour of the normal when moving along 
such an axis may give conclusive indications of fiat 
points. This is the case if the rotation of the normal 
(within the plane perpendicular to the twofold axis) 
changes its sense. Then, surrounding the point where 
the reversal takes place there exists for each point on 
the twofold axis a second opposing point on that axis 
with the same direction of the normal. As a con- 
sequence the reversal point must be a fiat point of 
odd order. Such fiat points are neither fixed with 
respect to their location nor with respect to their 
normal direction (within the plane perpendicular to 
the twofold axis). In particular, if an edge of a gen- 
erating circuit ends in two vertices with parallel nor- 
mals, a fiat point has to lie on this edge. In the case 
of catenoid-like surface patches (cf Koch & Fischer, 
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1988), each edge, therefore, contains at least one flat 
point of order one. Y and C(Y)  surfaces (Fischer & 
Koch, 1987), for example, have the same symmetry 
I4~32-P4332 and the same linear skeletal net [I4~32 
24(f) 2 . x0~ and 24(g) 2 ' • .. ~ ,y ,~+y]  with skew 
polygons as generating circuits. According to (a), 

777 both surfaces must contain flat points at 8(b) .32 ~ 8 g. 
According to (b), C ( Y )  surfaces show additional 
ones at 16(e).3. xxx. If the orders of all these fiat 
points are assumed to be /3 = 1, additional such flat 
points within Wyckoff positions of 14,32 with multi- 
plicity 24, i.e. on twofold axes, are needed in both 
cases. Inspection of the generating circuits shows that 
these flat points lie on 24(g) in the case of a Y, but 
on 2 4 ( f )  in the case of a C(Y)  surface. 

(d) If a minimal surface intersects a mirror plane 
in a line with an inflection point, this point must be 
a flat point of odd order because the intersection line 
is a plane line of curvature and its curvature at the 
inflection point is zero. Such a flat point and its normal 
are only fixed to lie within the mirror plane. Each 
multiple catenoid (Koch & Fischer, 1989a), for 
example, is halved by a mirror plane producing an 
intersection line with inflection points. 

(e) In the case of surface patches which are 
catenoids with spout-like attachments (Koch & 
Fischer, 1989b), the points where the spouts are 
united to three- or four-armed handles are flat points 
of order/3 = 1 or/3 = 2, respectively. In most cases, 
however, these points are distinguished by symmetry 
and rule (b) or (d) can be applied. 

5. D i s c u s s i o n  o f  the results  

For all but two families of minimal balance surfaces, 
the Wyckoff positions and the orders of their fiat 
points could be derived unambiguously. In addition, 
the fiat-point coordinates could be determined at least 
approximately. If the location of a fiat point was not 
entirely fixed by symmetry, it was estimated from a 
model.* 

The results are compiled in Table 1. The directions 
of the flat-point normals are not tabulated. If they 
are fixed by symmetry they can be read from the 
site-symmetry symbols. If a normal is only restricted 
to a plane, its free parameter may depend on the axial 
ratio [cf. the study of CLP surfaces by Lidin & Hyde 
(1987)]. Then either the direction of the normal or 

* To produce small models of surface patches, spring-steel wire 
was bent in the shape of generating circuits and spanned either 
temporarily by soap films or permanently by a special lacquer. To 
obtain models of larger parts of minimal balance surfaces stronger 
wires were welded to form parts of the linear skeletal nets and 
material from nylon stockings was used to span the generating 
circuits. The authors gratefully acknowledge the help of Mr K.-H. 
Linker, Mr W. Schmidtke, Mr H. Kilian and Mrs A. Senger for 
producing the wire frames and of Dipl. Min. I. Trautmann and 
Dipl. Min. A. Fett for part of the sewing. 

the axial ratio may arbitrarily be chosen. In other 
cases, however, the direction parameter has a specific 
but unknown value [e.g. for the flat points of Y and 
C(Y) surfaces discussed above]. In even more com- 
plicated cases several parameters may be related to 
each other in an unknown way and all of them may 
depend on the axial ratio(s). This happens, for 
example, for the two kinds of symmetrically indepen- 
dent flat points of HS3 surfaces (Koch & Fischer, 
1988). 

In total Table 1 contains information on 45 families 
of minimal balance surfaces. For 13 of these, i.e. P, 
D, CLP, tD, oCLP, oDa, oDb, H, tP, oPb, rPD, Y* 
[the gyroid surface of Schoen (1970)] and oPa sur- 
faces, rule (a) was sufficient to find all flat points. 
Rule (b) had to be used for C ( P ) t  and C(D)  sur- 
faces. For ten additional families, i.e. C(S),  S, Y, 
C (Y) ,  HS1, HS2, R3, R2, HS3 and C( ± Y) surfaces, 
rule (c) had to be applied in addition. These three 
rules suffice to determine the flat points for all 
minimal balance surfaces with disc-like or catenoid- 
like surface patches (Fischer & Koch, 1987; Koch & 
Fischer, 1988) and for three additional ones. Rule 
(d) helps to locate the flat points for the eight families 
with multiple catenoids as surface patches (Koch & 
Fischer, 1989a) and of four families made up from 
catenoids with spout-like attachments, namely C(H) ,  
tC(P), t  C(R2) and PT surfaces (Koch & Fischer, 
1989b). For the remaining two families of the latter 
kind, i.e. C(R3) and oC(P) t  surfaces, the list of flat 
points can only be completed by means of rule (e). 
In all these 39 cases there is no doubt about the 
Wyckott positions of the flat points and about their 
orders which always take the lowest values compat- 
ible with the site symmetries. 

The situation is more complicated for the remaining 
six types, i.e. for all surfaces built up from branched 
catenoids or from infinite strips and for ~ Y surfaces 
(Fischer & Koch, 1989a, b, 1987, respectively): BC1, 
BC3, ST1 and ST2 surfaces either must possess flat 
points with /3 = 1 in general position or, instead of 
this, flat points on the twofold axes, namely one kind 
with/3 -- 2 or two kinds with/3 -- 1. In all four cases, 
the models clearly show flat points in general position. 
A similar situation arises for ' Y  surfaces. Here, 
however, the model indicates flat points in Wyckoff 
position la3 24(d) 2 . .  x0~ with/3 = 2 rather than in 
the general position with /3 = 1. BC2 surfaces must 
either have flat points at P42/nnm 4(f)  2/m 3 3 3 • . ~ 

with /3 =3 or flat points at 4 ( f )  and at 8(m) .. m 
xxz, both with/3 -- 1. Then, each flat point with/3 --3 
corresponds to three closely adjacent flat points with 
/3 = 1. The models of BC2 surfaces imply flat points 

t The comparison of the flat points of C(P),  tC(P) and oC(P)  
surfaces as listed in Table 1 shows that two flat points with order 
one and site symmetry m of a tC(P) or an oC(P) surface corre- 
spond to one flat point of order 2 of a C(P)  surface. 
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M i n i m a l  
s u r f a c e  

Table 1. The fiat points of the minimal balance surfaces 

F l a t  p o i n t s  

G -  H G e n u s  O r d e r  W y c k o f f  p o s i t i o n  P a r a m e t e r s  

P 

C(P) 

D 

C(D)  

C(S)  

S 

Y 

C ( Y )  

HS 1 

HS2 

CLP 

tD 

oCLP 

oDa 

oDb 

H 

MC1 

C(H)  

R3 

MC2 

MC3 

lm3m-Pm3m 3 I 8(c) .3m ,1,  4 4 4  

Im3m-Pm3m 9 2 12(e) 4m .m xlO0 
I 8(c) .~m t l l  447 

Pn3m-Fd3m 3 I 4(c) .3m 333 7.174 

Pn3m-Fd3m 19 4 8(e) .3m x lx lx  1 
I 4(c) .3m 333 

4 4 4  

I l l  la3d- la3  9 i 16(b) .32 888 
1 

48(g) ..2 ~, Yl, 7-.Vl 

la3d-lZ13d I 1 ! 16(a) ..3. 000 
1 1 1  16(b) .32 8ss 

48(g) . .28 , t  Yn, Tt-Y~ 

7 7 7  
/4132-P4332 9 1 8(b) .32888 

t 1+. 
24(g) . . 2 8 , ) h , a  vl 

7 7 7  
14132-P4332 13 1 8(b) .3288~ 

16(e) .3. x lx lx  I 

2 4 ( f )  2.. x201 

P6222-P6122(2c) 7 ! 6 ( f )  2.. ~0z I 
6(h)  .2. x20 ~ 

1 
P6222-P3212 4 1 6 ( f )  2.. 20z 1 

6(h)  .2. x20~ 

P42/mcm- P42/mmc(v) 3 1 4 ( f )  2/m.. O~ 0 

P42/nnm-141/amd 3 1 4 ( f )  ..2/m 333 4 4 4  

Pccm-Cccm 3 1 2(c) ..2 / m 012 0 
2(d)  ..2/m ~00 

Pnnn-Fddd 3 I 4 ( f )  i ,~74333 

Cmma- lmma 3 1 4 (d)  2/m.. 00~ 
4(e) .2/m. 11 470 

P63/mmc-P6m2 3 I 2(a)  3m. 000 
6(g) .2/m. ~00 

P63/mcm-P62m 7 1 2(b) 3.m 000 
4(d)  3.2 ~ 0  
6 ( f )  ..2/m ~00 

12(j) m.. xly11 

P63/mmc-Pfam2 7 I 2(a)  3m. 000 
4 ( f )  3m. ~2z l 
6(g) .2/m. ~00 

12(j) m.. x2Y21 

P 6 / m c c - P 6 / m  13 4 2(a)  622 001 

1 4(c) 3.2 334 
12(j)  .2. x101 
12(k) ..2 x2, 2x2, t 
12(k) ..2 x 3, 2x 3, 41 

P 6/mcc -P 6 /m  13 4 2(a)  6 2 2 0 0 ]  
1 4(c) 3.2 ~ I  

12(k) ..2 xt,  2xl,  I 

12(/) m.. x2Y20 
12(I) m.. x3Y30 

P 6/mcc -P 6 /m  13 4 2(a)  622 001 
l 4(c) 3.2 ~ 

12(j) .2. x,01 

12(/) m.. x2Y20 
12(/) m.. x3Y30 

x I = 0.42 

x t 20"21 

3'1 =0"38 

Yl =0"25 

Yl = 0 . 1 0  

x~ =0 .08  
x2 = 0.28 

zl =0"14 
x2 =0 .28  

z~ =0 .18  
x2 --- 0-20 

x I = 2y I = 0.30 

zl --- 0"20 

x 2 = 0"20, Y2 ~- 0 

xl ~-0'33 
x2 = 0.20 
x3 = 0'43 

x~ = 0 '20 

x 2 ~- 0.38, )'2 = 0 
x 3 ~- y3/2 = 0"45 

xt =0-33  

x2 = y2/2 ~ 0"22 
x3 ~- y3/2 = 0-42 
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M i n i m a l  

s u r f a c e  G - H  

Table  1 (cont . )  

Genus Order 

F l a t  p o i n t s  

Wyckoff position Parameters 

M C 4  

C ( R 3 )  

tP  

M C 5  

t C ( P )  

R2 

M C 6  

M C 7  

C ( R 2 )  

oPb 

o M C 5  

oC( P) 

P T  

HS3  

P 6 /  mcc-  P 6 /  m 

P 6 /  mcc-  P 6 / m  

1 4 / m m m -  P 4 / m m m  

P 4 2 / m c m  - C m m m  

1 4 / m m m -  P 4 / m m m  

1 4 / m c m -  P 4 /  mbm 

I 4 / m c m -  P 4 / m b m  

P 4 / m c c -  P 4 / m  

I 4 / m c m -  P 4 / m b m  

F m m m -  C m m m  

Pccm-  P 2 / m  

F m m m -  C m m m  

F m m m -  C m m m  

P6222 - P6422( 2 c) 

2 ( a )  622 00~ 
1 2 1  

4(c )  3.2 334 

12(k) ..2 x , ,  2x , ,  

12(I) m.. x2Y20 

12(I) m.. x3y30 

2 ( a )  622 00~ 

4(c )  3.2 121 3 3 4  
X I 12( j )  .2. 104 

12(k) ..2 x 2, 2x 2, 

12(k) ..2 x 3, 2x 3, 

12(I) m.. x4y40 

12(I) m.. x~ysO 

12(/) m.. x6y60 

12(I) m.. xTyT0 

12(I) m.. xsys0  

12(I) m.. xgygO 

2 4 ( m )  1 XloYloZlo 

8 ( f )  . . 2 /m ~ "  ,iv, 4 

8(m) .2. X,~ 
8 ( 7 1 )  m.. X2Y20 

4(e )  4ram OOz t 
8 ( f )  . . 2 /m t , ,  4 4 4  

16(I) m.. x2Y20 

4 ( a )  422 00~ 

8(e )  . . 2 /m  " 4 4 4  

16(j) .2. x~O,' 

4 ( a )  422 004 t 
8 (e )  . . 2 /m I t ,  4 4 4  

16(k) m.. x ly lO 

2t a) 422 00'~ 
I I 1  

2(c)  422 ~,24 

8 ( I )  .2.  xl~14 

8 ( m )  m.. x2Y20 

8 ( m )  m.. x3Y30 

4 ( a )  422 004 l 

8 (e )  . . 2 /m ,11 4 4 4  

16( j )  .2. x,  04 t 

16(k)  m.. x2Y20 

16(k) m.. x3Y30 

16(k) m.. x4y40 

16(I) . .m xs,  ~ + x s ,  z s 

8(c)  2/m. .  0 ~  

8 ( d )  .2 /m.  4041 I 

4 ( j )  2.. x t24  

4 ( 0 . 2  ~y2', 
4 ( q )  . .m x3y30 

4 (q )  . . m  X a Y 4 0  

8(i)  m m 2 0 0 z  I 

8(c) 2/m.. o~', 
8 ( d )  .2 /m.  ~04' ' 

16(o)  . .m x2Y20 

16(o) . .m x3Y30 

8(c)  2/m. .  0 ~  

8(d) .2/m. "o" 
16(o) . .m XLvIO 

6 (h )  .2. x ,0~  

6 ( j )  ..2 x 2, 2x 2, 

x~ = 0.43 

x 2 = 0.27,  Y2 = 0 

x3 ~ Y3/2 ~- O" 16 

x I = 0 " 3 3  

x 2 --- 0"20 

x 3 = 0"43 

x4 = 0"22, . v 4 = 0  

x 5 -~ 0.44,  Y5 ~ 0 

x6 --- y6 /2  ~- O" 14 

x7 = y7 /2  ~- 0"27 

x s =  y 8 / 2 ~ - 0 . 3 8  

x9 = yg /2  = 0- 46 

Xlo = 0.45,  y l o =  0.13,  

Zlo ~ 0"05 

x I = 0 " 2 2  

x 2 -'= 0 '20 ,  Y2 = 0 

z t = 0"45 

x2 = 0-40, y2 = 0 " 1 0  

x t = 0 ' 3 3  

x~ ---0.35, y~ ==0 

x,  = 0 " 3 3  

x 2 - 0"25, Y2 = 0 

x3 = Y3 --- 0" 22 

x I = 0 " 3 3  

x z =  y2=O'15  

x 3 = 0"20, Y3 = 0 

x4 =- 0.40,  ),4--=0 

x5 = 0.20,  z.s ~ 0.05 

x I = 0 ' 2 2  

Y2 = 0"22 

x 3 =-- 0"20, Y3 = 0 

x 4 = 0, Y4 = 0.20 

z, ---0"05 

x2 = 0.25,  y2 = 0 . 1 5  

x3 = 0.15 , ) , 3 = 0 . 2 5  

x j - - -0 -25 ,  y, = 0 . 1 0  

x I = 0 - 1 5  

x 2 = O. 20 
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Minimal 
surface 

FLAT POINTS OF M I N I M A L  B A L A N C E  S U R F A C E S  

T a b l e  1 (cont.) 

Flat points 

G -  H Genus  Order  WyckoiI posit ion Parameters 

STI P6222-P6422(2c) 7 1 12(k) I xlylz  I 

rPD R 3 m - R 3 m ( 2 c )  3 1 3(b) 3m 00~ 
9(d) .2/m ~0~ 

BC! P6322-P63 9 1 2(a) 32. 000 
2(b) 3.2 00~ 
2(c) 3.2 ~ 

123  2(d) 3.2 334 
6(g) .2. x 100 
6(h) ..2 x 2. 2x2, 
12(i) I x3Y3Z 3 

BC2 P42/ nnm-P4 ,nm 7 1 4(e) ..2/ m ,11 . 4 4 4  

4(f)  ..2/m 333 4 4 4  

8(j) .2. x, O~ 
8(m) ..m x2x2z2 

ST2 P42/nbc- P42/n 7 1 8( h ) .2. x I 0~ 
16(k) 1 x2Y2Z 2 

BC3 I422-I4 6 

C(:  Y) la3-Pa3 13 I 

Y la3- Pa3 21 

Y* la3d-  14132 3 

oPa lmmm- Pmmm 3 

with /3 = l,  thus seemingly disproving the existence 
of  the only example of  flat points with /3 = 3  on 
three-periodic minimal surfaces. In the last two cases, 
the models are not accurate enough to permit a com- 
pelling decision. 
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